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INTRODUCTION 

.

Passive acoustics are used to detect, classify, and local-

ize signal sources. Present practice is based primarily on spectral-

and cross-spectral analysis in which phase relations between signal

components of differing frequency is not exploited. Bispectral

analysis is an important extension of power spectral analysis which

makes use of inter-frequency phase information. MacDonald has been

promoting the application of bispectra in various problems (see JSR- -

82-601, Speech Research, by Despain, MacDonald, and Rothaus). This

collection introduces the bispectrum, and other polyspectra, and

summarizes three preliminary studies exploring application to

passive acoustic ASW.

The first section is a primer by G. MacDonald on bispectra

and higher order spectral 
constructs. In this section, the auto- 

EN

bispectrum and cross-bispectrum are introduced and related to third

order time-lagged mean products of the time series and to higher H -

- order transfer functions connecting the process under examination to

a serially independent generating function. Also discussed is use

of bispectra in detecting and describing nonlinearity in the process

generating the time series.
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In the second section, R. Davis addresses the detectability

of a signal through its spectrum and its bispectrum. Surprisingly,

no processing gain derives from bispectral analysis even though it

makes use of waveform (inter-frequency phase relation) informa- ...

tion. Reliable detection requires more signal energy for bispectral ..

detection than for spectral detection unless the signal skewness is

large compared with unity. The amount of averaging applied to

reduce random sampling variations is proportional to the time-

bandwidth product N; as N increases, the disadvantage of bispectral

analysis increases.

In the third section H. Abarbanel describes some experi-

ments in which numerically generated signals, rich in harmonic

content, were subjected to power-spectral and bispectral analysis.

These show that the signal bispectrum contains more structure than

the power spectrum, indicating that bispectral analysis of signals

may provide very useful additional classification beyond that

obtained from energy methods. Consonant with the results of

Section 2, it is found that background noise obscures the signal

bispectrum and that the energy signal-to-noise ratio required for

useful signal identification is comparable for spectral and

bispectral analysis.

2O
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In the fourth section W. Hunk outlines an application in

which the inter-frequency phase information in a class of signals

one might expect to be produced by submarines can be used to obtain

localization information. In addition to presenting this poten- p ..

tially practical application, this section provides insight into the

origin and description of inter-frequency phase relations using

bispectra and related analytic tools. I

To summarize our preliminary conclusions: "

(I) It is possible that inter-frequency phase can be used

to describe aspects of source-receiver geometry, and .,I

this may have real utility in short range target

trailing.

(2) The bispectrum magnitude and phase contains informa-

tion about the signal not available in the power

spectrum. This could provide useful classification II7Zi

signatures if source waveform is not strongly ...

dependent on geometry and operating conditions.

(3) Bispectra do not appear to offer any advantage in 3.4

detectability at low signal-to-noise ratio unless the

signal skewness is large.

3
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From a broader perspective, bispectral analysis is just one

analytic tool which describes inter-frequency phase relations or

waveform. These should, in general, provide additional signal

description and some discrimination of signal and noise. To assess

this possibility, it is necessary to understand what waveform

signatures exist in real signals, how well these survive propaga-

tion, and how they may best be analyzed. Toward this end we

recommend:

(1) Submarine and surface ship signals should be analyzed

for bispectral, and other waveform-descriptive,

signatures. Sonobouy records obtained at high signal-

to-noise ratio would be best for this purpose.

(2) Analysis of inter-frequency phase distortion during

propagation should be explored analytically to provide

order-of-magnitude estimates. $

Beyond passive acoustics, we hypothesize that bispectral

analysis, or some other analysis tool based on inter-frequency phase

relations may be useful in active acoustics in the presence of

reverberation. Assuming that the target Is relatively localized

compared with the reflectors producing reverberation, it is likely

that phase information may help discriminate target and clutter. ,.

4 .co.
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Some analysis is needed to quantify the gain which might be

achieved.
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1.0 A PRIMER ON HIGHER-ORDER OR POLYSPECTRA

Analysis of time series is the central problem of data

analysis in a wide variety of defense- and intelligence-related

applications. Development of the theory of time series analysis has

followed two paths, communications engineering and mathematical

statistics. The engineering community has emphasized the frequency

or spectral approach, while the statisticians have found comfort in

the time domain. Both groups have based their work on stationary

linear models. These models have had great success in a wide

variety of unrelated fields, and quite naturally there has been

little effort to explore non-linear, non-stationary models. The

very great achievements and the refined methods used in stationary

linear models suggest that it is unlikely that further progress in

time series analysis is likely by pursuing concepts in areas such as

linear predictive coding. Further, simple observations of the world

around us show that actual phenomena are non-linear and non-

stationary. Progress in data processing is likely to be in the

direction of models which incorporate non-stationarity and non- ""

linearity. This primer is concerned only with non-linearity. Non-

stationarity will be dealt with in a separate paper.

6
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1.1 Linear and Non-Linear Models

Any discrete stationary process xt with a spectral density

can be represented as a linear combination of an uncorrelated

stationary process e in the form

xt  h n (.1)
n--.

Equation (1.1) provides a general representation of a linear process

and can easily be transformed into the familiar ARMA (autoregressive

moving average model) if the function

g(z) h (1.2)

can be approximated by a rational function a(z)/O(z) , Provided

that (1.2) holds, and assuming O(z) has constant term one, then

Xc. O + lt_ + a C . (1.3)
xt I - 0 1 t- - a2It-2 +

. in which E is an uncorrelated process

E[£_ ] - & 2 (1.4)',.i-~- t-m n-m --"

where C is the expected value of .-t

7 -'
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This representation does not distinguish between uncorrelated and

independent variables; a linear model is one in which

- h e (1.5)t n et--A

where et are independent variables. Of interest is that et an
tA

uncorrelated process, and et, an independent process, have the same

second-order structure. Both have white spectra but may differ in

other ways, as will be noted below. If e is a Gaussian process,
t

it is both uncorrelated and independent, and the distinction between

C and et vanishes; xt is then also a Gaussian process.
t

In order to illustrate the difference between e t and et

in general, we consider the prediction problem. If the sequence et

is strictly independent, then the past contains no information about .

the future, and the best predictor of et is its mean. This is also
t

true for an uncorrelated process C provided the predictors are

linear. However, the past may contain information about the future,

which will be revealed if the predictors are non-linear functions of

the observed values, even though the values of et are

uncorrelated. For example, consider a process n defined by 771
V. = e + a et_, et

t t t- -2

,'

,'5**-**** --.-. S-*. . , .. .*.- . . . . - . . . . . . . . .. . . . .. --.. ..-
- 4* . . . , . ... . .- . . . .. , , - . . . . . , . . . ..'-' ' , , .



where, as usual, et represents a serially independent process with

2
zero mean and constant variance, a * The process n~ is

uncorrelated and as far as its second-order properties are

concerned, it behaves as an independent process. However, unlike

* strictly independent processes, the optimum mean square error

predictor which is at most quadratic, and looks two steps back in

time, is simply

~t+I -Bt t-

2
where 8 c/(I + at20a

From this simple observation, it is obvious that there are processes

that do not follow the linear representation given by (1.5).

A generalization of (1.5) is

-t h hi e t-i + h ije t e t + hij k et~ e C - +

(1.6)



in analogy to a Taylor series expansion. Such functional expansions

were first studied by Volterra and introduced into non-linear sta-

tistics by Weiner, so the expansion in (1.6) is generally known as

the Volterra-Weiner expansion. One may always suppose that the co-

efficients hi . are unaltered by permutation of the indecies.

Though there is a growing literature on such representations, the

problem of estimating the generalized transfer functions hij ...n has

proven to be intractable primarily because of the large number of

parameters involved. Progress in using such a representation is

likely only if the process xt can be represented by a small number

of parameters or if the coefficients him have some sort of

"smoothness" property. In the linear case, the smoothness condition

is imposed on H,(f), the Fourier transform of hi, by insisting that

H (f) be a decent function or, in the case of an ARMA process, that

H,(f) arises from a rational function.

Since transfer functions have proven to be exceedingly use-

ful in linear problems, an obvious generalization is to define a set

of generalized transfer functions by

01

V V.1
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H (f) - h~ e 2wif I

u2(f1f2) -~ h~, -2wi (f x+f~m 17

e 3 (f 1 ,ff3) - ~-2wi (f1 W 23fn)

and so on.

If the exciting or initiating process e t can be represented

as

1/2 Zirift
et f e dZ(f)

- /2

then (1.6) can be written with the defined generalized transfer
1 6.

functions as

-t 11/ 1 f e 2 itdZ(f)

f Y2 f"2 H 2(flf 2) e2vri(f I+f 2 )t Zf) (2

Y12 - '/2

, %
:L A*-



V/2 1/2 '2 2irif +f )t,~~,
+ f f f Rf 19f2,f) e dZ~f )dZ f)dZij

Y2 Y2 /2

+ . . (1.8)

In this representation, H1 (f) is the familiar linear transfer

function. In the second integral, 11( 1, 2  dZ(fj) UZf 2

represents the contribution of the components with frequencies f,

and f 2 in et to the frequency fl + f 2 in XeIn the simple case

where

2wif t
e ae

then

dZ(f) -aSf

0

so that (1.8) gives

2,rif t 4irif t

x aH1,(f) e + a H2  f, 0  e

6wif t

000

12



This is the familiar result that a non-linear process acting on a

sinusoidal input at a frequency fo produces an output containing

integer miltiples of the frequency f.

1.2 Polyspectra

For linear problems, the second order-moments of the exci-

tation et and the process xt are used to estimate the coefficients

in an ARMA representation, though they do not completely determine

the coefficients. For non-linear processes, higher-order moments

and their Fourier transforms may provide an insight. For the

process xt, the third and fourth cumulants are defined by

R 3 (T IT 2 , 3 ) -E[ (xt, 1 M l)(Xt., P- lX(Xt, - x)

1 2 34

12 3 4

- - X) (xt - 11,) E (xt+r - ' (Xt -lix a
3 4

4 2 3

(1.9)

13



where P x is the mean of x

1A1  E[xt]j~;jf*

- This notation, while unconventional, clearly reveals the sy~etry in

the T's *We note that for a stationary process, the origin can be

selected so that a given T can be set to zero, e~g., i13(r1,r2 0)

in which case (1.9) reverts to the usual for.

The third- and fourth-order polyspectra are then defined by

- a a a ~-2ui(fr T +f T +f3'r) --

B3 (flf 2,f3 ) ~ 3(.r1,' 2 9 3)e

4(fff2,fff4

-211(- T +f r+f T 4f ii
ft.~~~ - - -- wfr 1  2 2 3 3 44)

~ 4(r1, 2 9 3 % 4 )e

1 2 -3 4 f

a a ~27ri (f T +fi.) T a 2wi (f T +fr) :Tj
A~ 1. 12 2) 3 3n- 44)

2 .

iT
1 23

14
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R - (T 1,T3 ) e-21 1 + 3 3 ) R R(T,T4) e
4 T T- Tr T~~-m

1 3 2 4

T2w (f T r 1 4 fe4 4 )~ -2wi (f 2 T2 +f 3 T3 )

1/2 "2' 2 211ft+~ 3f)

Th nvre treainshps amothng h rqece n1n4flo

e2wftd T* +fT.

'/2 '/2 /2 1 1 (~r,+ 2(4 2  13( 3 )R 3TIT2T3 f f f B e lflf3 fId~f
/2 1/2 "/2

3 4

EtdZx iZ 2 dZ(f)(12

then R3becom5

1/ / V x)

. .. . . . . . . . . . . . . . . . . ..3.(t+.[.
. . . . . . .. . . . . . . . . . . . . . . . . .

3* 2'. 3).._
V2 ../2

E~Z.f...( )Z (1.. . ....

-....*.'*.*. I - 2 (Y.. . S p ..

15-- .. .: . .fi2L



an siial fo 4 o h cs fasrctysainr

andcesmlal whr R unhoreb the sfa stitl fTIPtiondy

K~dZ (f,)dZ (f)dZ.(f) ist vanish except along the plane

f + f + f 0o
1 2 3

Then (1.11) shows that for a stationary process,

B-ff)d fd E[dZ (f1 )dZ (f)dZf)] ,(.3

A relationship which must be interpreted with some care, since

B3 (f1  f2 f3 df1 df df3 is a singular measure, vanishing off the

plane f + f f -0.1 2 3

In the literature, it is conventional to suppress depen-

dence of 3 on f -f -f sothtBideod
3 3 1 2 tht3ideod

B 3(fl, f £9f3) -~ l~ (1.14)

Similarly, noting that £4f -f 1 f- 3  it is customary to write

34 (fI f 2 'f Vf 4 ) 4(fl'f2'f3) 1.5

16
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For historical reasons, B is known as the bispectru. and B4 the

"" trispectrum even though (1.13) suggest that B should really be

called the trispectrum and so on; we will abide by present conven-

tion.

1.3 Polyspectra for Gaussian Processes

A well-known result of statistical theory is that all joint

cumulants higher than the second order vanish for a multivariate

normal process. The immediate and important consequence is that all

spectra of order higher than two vanish for a Gaussian process. The

higher-order spectra would thus appear to be of use in investigating

properties of a non-Gaussian stochastic process or of a non-linear

system driven by a random input. As noted above, polyspectra give a L ..

measure of the phase correlation between components whose frequen-

cies sum to zero.

While the above paragraph captures the essential features

of polyspectra, there have been few genuine applications. In part,

this has arisen from the large data volumes and heavy computation

required to numerically evaluate higher-order spectra and in part

from statistical difficulties in interpreting the results. However,

it would appear that the most important impediment has been the lack

of a physically understandable interpretation of polyspectra. As a

first step, we consider cross polyspectrum.

17
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1.4 Cross Polyspectrum

* The cross-bispectrum is a simple generalization of the

bispectrum. A form of the third-order moment for two processes yt

* and xt, where for tutorial purposes x~ can be thought of as an input

into a system and y~ the output, is

R (T OT 2 E3) - - iP)(X~. )y~.~-i
XX)' 1 2 3~

and the corresponding bispectrum is

1- 1 2 23 fB (f1 ,f 2 ,f) R (T 1SI2T 3 T 2r~ 1 1e2 33
xxy ~ ~ 233 x 93

and if

1/2 2irift
yt f e dZ (f)

then

B ~(f 1 ~ ,f 1  )df df df3  E[dZ (fl)dZf 2 )dZ (f3

*An illustrative example of the use and limitations of the

bispectral analysis is contained in the process

18



-t h x - + h A hx tx t + N t (1.16) L- z
1-0 1-0 MO0

where xtis a zero mean stationary Gaussian process, and Ntis a

zero mean noise independent of xt. From (1.8), we see (1.16) takes

the form

1/2 a 27rif tZ(f

- /2

(1.17)

1Y2 1/2 2ii(f I+f 2)t

+ f f 2flf 2) e dZ x(fl)dZx(f2 ) + NtZ

The mean of yt is

'/2
E(Y] f H2 H(f,-f)P(f)df (1.18)

where P is the power spectrum

* P(fOdf -E[dZ (f)dZ (-f)]
x X

The first odd-order moment of yt is thus dependent on the quadratic

* ~transfer function H2 ffJ

2*l'2

19



The second-order moment E[y yt+] takes the form
t t,

- ~ "2 '/22wi(f t+f~t
f/2f /2a ,(f,)u(f 2  e 2) e e2wifz E[dZ (f 1 )dZ,(f 2 )]

A/2 A/2 "/2 A/2  2 f 1+f 2 )t
+ f' R 2 (flf 2) H 2(f3,f4) e

V2 - Y2 - 2'/2

elif 3 f) E[dZ x(f,)dZx(f 2 )dZ.(f 3 )dZxf 4 )l

(since x t is Gaussian, E[dZ x(f,)dZ (f2 )dZ (f3)] 0 ).Using the

standard decomposition theorem for even-order moments of Gaussian

processes,

E[dZ (fl)dZx( )dZx( )dZxf)

(f x2 (f3x(Y

AE~dZ x(fl)dZx(f2) ]E(dzx(f3 )dZx(f4)]

+ E[dZ (fl)dZ.f3)E[dZ f)dZx 4

+ E~dZ(f, )dZ(f 4) ]E[dz(f 2 )dZ(f 3)]

20



and (1.17) reduces to

1/2 2irifr
R (T f H H ) 1(_f) e P(f)df

V2  '/2

+ 11/ fI H-2f i(f dfr df~ wfd~f
l2(f,1f2)1 2(-f3,-f3)pf e

Y2 '/2

"2 " ~r~l~2 P(f ,W(f 2 )df 1df 2
f 2 (f,,f 2 ) 2 (-fl,-f2)

The second-order moment of ytthus contains products of the power

spectra of x~ weighted by the quadratic transfer function.

An examination of the cross bispectra is more revealing of

the underlying structure of the generating process. The cross

moment is

M a*

(n) E- xt E hex _, + httj~x~_nt
YXt+nt -~

tw 1=0 Sm

- o hE[x xtt~ h R (n-1.)

t t-I~n£ xx
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since the odd-order moments of the Gaussian process vanish. Taking

the Fourier transform of both sides, we obtain

B YX(f)-H (f)B xx(f) H- P

and arrive at the familiar result for linear systems:

The cross-bispectrum B I can be obtained from the representation of

yt given in (1.17):

E[y t xt+xtU] f_ 1/2 f 12 f / e2W~l~C+) 3 t)

V/2 Y2 Y12 1/2 2wi[(f +f )t+f (t+z)+f (t4a)]

+ ~ / f f f/ e BH2 (f1,f2)

6E[dZ (fl)dZx(f2 )dZx(f3 )dZx( 4)
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The first integral vanishes since xt is Gaussian, and the second

term can be decomposed as above so that

'2 '2 2irif (1A-u)

+~x f f Re f df d d
~~V2 1/2/1

"/2 1/2 2ii( 1  f2 )+1 f f H -f2-fl~Pxfl~Px~2)e df Idf2

We now consider the quantity

R (1,m) -E[ytxt txt.] -E[xt+ext,]E[ytI

* From (1.18) we note that the first integral in (1.20) is just

*E[x +xt+,]E[ytI so that

1/2 "/2 2ii(If 4uf2
R (I'M) -21f f e df df1X - 2(-flf 2)p(f1 )P(f2) 1 2
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Since hL can be made symmetric in X and m, then H2 f 1 ,f 2 J 

symmetric in f, and f2. The cross-bispectrum B (fl,f 2 ) is then

t

4'X Bf, 2 ) - H2 (-fl,-f2)P(fl)P(f2)

and the quadratic transfer function is determined by
-. -f -/'.,,

H2 (f1 ,f2) - ( , 2 )P(f2 )

For the particular process given in (1.17), it is possible to

recover the linear and quadratic transfer functions by measuring the

power spectrum of the input xt , the cross spectrum Byx , and the

cross-bispectrum B (fl f2 ). For more general processes with

terms of various orders, this is no longer possible, and an itera-

tive calculation is required.

1.5 Meaning of a Finite Bispectrum

*If a time series yt has a statistically significant non- L'

vanishing bispectrum, then two interpretations are possible. The

generating process contains non-linearities which my be described

in the form of (1.6) or possibly som other representation, with the

2 --

.1J
6i::'i'



excitation function ej being Gaussian or non-Gaussian. Alterna-

tively, the generating model for the process is purely linear but

the excitations et are non-normal, have a finite skewness, and are

independent. In this case, the third-order moment for

t t9.

tt

transfer function H Mf

H1(f - ~ht1 2wft

t-0

the bispectrum of xt is

Bff2) t E~~ 1 f)H(f2) li1(-fI f2)

The power spectrum of x~ is just

252



so that the square of the bicoherence given by

P (( , 2)jPx(f 1 ) Cf2) Jf1 + f2)
is also a constant. Thus for a linear system with a Gaussian input,

the bicoherence will vanish, and a linear system with a non-Gaussian

input will have a constant bicoherence not zero, provided the input

has a finite skewness.

The determination of the bispectrum does not by itself

permit the identification of a non-linear underlying process or of a

non-Gaussian excitation function. The excitation function could be

non-Gaussian but have a vanishing skewness, and the resulting
4

bispectra of xt would vanish. Alternatively, a constant bispectrum

does not imply a linear process. A finite and varying bispectrum is "'"':

certainly suggestive of non-linearities in the generating process.

It is for this reason that the bispectra analysis of speech, with

strongly bispectral peaks for the vowels, suggests that speech

production has important non-linear characteristics. Similarly, in

underwater acoustics bispectral signatures may provide powerful

methods for classifying sound sources.

26L
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2.0 BISPECTRAL DETECTION

2.1 Introduction

Present practice in acoustic detection rests on discrini-
€

nating signal from noise on the basis of energy distribution in

frequency and time. That is, waveform and phase structure of sig-

nals are not exploited. The existence of sequences of harmonically

related lines in signal spectra suggests that, at least in the case

of machinery produced sound, there may be useful phase information ->

in signals of interest. Beyond this, it might be supposed that

broadband signals produced by highly nonlinear hydrodynamics (flow

noise and blade-rate signatures) are also associated with stable

phase relations between signal components of differing frequencies.

The question addressed here is whether such phase relations, if they

exist and are not destroyed by propagation, could be used to enhance

detectability of weak signals.

We consider the received record, R(t), to be the sum of a .,.

signal, S(t), and noise, U(t). Over any record of length T starting

at time T these have Fourier representations

iWt[S(t); U(t) = E [.(w,t); u(w,)] e

27

.. . . .. . . ..- .S.******v.**...-*.-j@*.

... '-,, .'.. . . - .. . . *.- .. - . *". -. * . . . . . . .. .'- . . . .. : . . . - . . . o .. . - . . . -..



-Za z*.I

where w is an integer multiple of A = 2w/T and

"T+T ., ,- ,

[s(w.-C); uNw,'J f IS(t); U(t) e- dt •

The received record has Fourier amplitudes !-.. -

r(w,'r) - (wA,'r) + u(w,r)

For this discussion it will be assumed that records are

prefiltered so that the power spectrum of noise is uniform, that is

u 'o -

where < > denotes a long-time average over T . Further, it is -

assumed that noise is the sum of many contributions from independent

sources and may be approximated as normally distributed. Neither of a

these idealizations is strictly accurate for oceanic acoustic noise,

but they are fair approximations which do not prejudice the compari- "

son made here.

The interest here is in learning how use of additional

information about the nature of the signal, S(t), affects detect- -

ability. For this comparison three simple detectors are considered.

28 .,
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2.2 The Three Detectors

.- . . -

Energy detection is based on some variant of the spectro-

gram

2
P~w~r)--Ir•wT,

where the average received power is

I +T 2
y f R (t) dt-EAwP(w,T)

The spectrum is the time average P(w) =- (wx) . The simplest ,.--

energy detector is of the form

DE(T) Z AW P( -,T) - EAW P(W,T) (2.-E)

(1) U ( i " "").

where the sums are over particular frequency regions Q and 0 -
U

Here 0 is a region of positive frequencies occupied by the signal

and 0 is a non-overlapping region in which signal is absent. N

and Nu are the number of fundamental frequency Intervals In the

respective frequency regions; N is the time-bandwidth product

EAw • T/2r . The frequency regions need not be continuous and 0

might, for example, be a series of bands encompassing various

29

.... . ....... .. . ... .
: .. .......... ... .. : ..... :. .. ,,. ...,. ..,.. .. ,... . .. ... ., .. ..-. ..: . ...-.. . ...,. .. .' . .... . _ .> .'.. .... .... ...,



anticipated machinery signal lines. The second term in (2. IE)

simply serves to subtract from D an estimate of the noise
E

contribution in the first tern. In considering detector output
.

variability, it is assumed that N >> N
U

Bispectral detection might be based on the bi-spectrogram

B~1, 2, -r(w 1,r) r(w2,r) r(-w - W -r)

(2)

*where the received signal's average cube is

fT+ R (t)dt E fw E AW B(W1, O,)

1 2

*The bispectrum is the time average

1V 2
B(WIW 2 <B(w 1 ,w 2' T)> -IB(w Vw 2 )I e

where *is the bi-phase. From the view of signal-noise discri-

mination, the bispectrum is a simple construct which makes use of

*the phase differences between different frequencies; the particular

phase information preserved is that which contributes to skewness,

30
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A simple bispectral detector is

,.- - °. " - " -

2-w
DB(T) 9 W (2)9 -(w1,w2 ,r) e (2.1B)

where is an a priori estimate of the bi-phase * • Note that ,

since B(W1 ,W2 ) includes the Fourier amplitude at frequency

WI+ W2 , this detector makes use of energy outside 1 . Use of

this detector requires that the bi-phase be somewhat predictable so

that the various terms in the sum (1B) can be phased to interfere

constructively. In practice, detection could be based on 1DB1, in

which case the only requirement would be that *(wiw 2) be reason-

ably constant for w and w2  in n

Maximal signal waveform information utilization is embodied .

in a detector based on matched filtering with a perfect replicate of

the signal. Such a detector can be expressed as a convolution of

signal and the record and is equivalent to -.

D - 1: s(w,-r) r(-w,T) (2.114)
W 

Al

This is not, of course, a realizable detection option, since S is ,

not known; it is included here only for comparison purposes to show

what could be achieved if all signal waveform information could be

used.

31
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The three detectors have comon features. All involve a

sample of information from a region of frequency space 0 and time

T; if AO is the bandwidth of 0 , the size of this sample is th

time-bandwidth product N - At - T/2w . If applied to a record

consisting of only noise, all detectors will produce some output

D'(c) but the average output over many realizations,

<D'(T)>, will vanish. In the case of energy detection, -

<Dt> - 0 because a priori information about the noise spectrum was
E

used to make <Dl> - N P - 0 ; in practice this may not

U

be strictly achievable but the bias, <D1> will be small.

<D3>_ 0 because the bispectrum of normally distributed noise,
B

having no stable inter-frequency phase relations, vanishes; in

reality the bias may not strictly vanish for some noise sources but

it should be small unless the noise arises from a localized source

which we here consider a signal. <D'> - 0 because noise is not
H

correlated with signal.

2.3 Simplified Performance Measures

Detector sensitivity to signal may be characterized by the

mean output, <D>. For comparison purposes, the value of this mean

output is

32
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<D E > E(2.2E)

<D > =qE 3/ (2. 2B)B

0D4> -E (2.2M)

where E <S2 is the signal variance.

The bispectral detector's signal output depends on

<S(W s(W a (W + W) >e2
1 2

In the simplest case when the bi-phase *and its estimate *both
vanish, q is simply the signal skewness <S >/E3 2  When the inter- 1---

frequency relationship is more complex there is no simple interpre- -

tation of q but it remains true that there is no a priori bound

* which can be placed on its magnitude. If the probability density

* . function of S is sufficiently dispersed (i.e. the probability of

* .extreme values is much greater than for a Gaussian distribution with1

* the same variance) then large values of q are possible. On the

other hand, if the probability density is central (with extreme

33
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values having probabilities comparable to a normal distribution)

then q will be of order unity. Without knowledge of the signal's

bi-spectral character no finer bound can be placed on q. Our

approach here is aimed at the order-unity-q case. We note that if

the distribution of S is dispersed on q can be large, but to make

use of the extreme values of S which make q large will require use

of long range records, much longer than the T required to achieve

frequency resolution. Further, the extreme events responsible for

large q would also be large individual events to an energy detector

(such as DE) and might be detected on this basis. -

In principle, (2.2E) is valid for any a , T but in prac-

tice time varying sources or Doppler shifting would require a to

increase with T. Achieving (2.2B) requires that the phase of the

bi-spectrogram be perfectly stable and predicted by * of (2.1B).

Frequency dependent propagation delays would thus degrade this

output in practice and, to the extent that differential propagation

delays increase with frequency separation, would place an upper

limit on the bandwidth of 9 ; similarly, time varying source struc-

ture or Doppler shifting would make prediction of variations of bi-

phase more difficult as T increases. Achieving (2.2M) requires a

perfect matched filter in the presence of propagation phase distor-

tion and the requirements for this become more stringent as T or the

* -- . . . . -.'£....
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bandwidth of 0 increases. In the spirit of a simple comparison we

have assumed that T and Q are chosen such that frequency and phase

stability do not degrade the detector signal outputs (2.2).

In the absence of signal the detector outputs, D', are

random variables with standard deviations, a - <D I  which

can be computed under the assumption that the noise is normally

distributed and stationary:

a N 2  (2.3E)

B N [ u Al (2.3B)

SE/ 2 [P Al/2 (2.3M) -

Here N is the number of (positive) fundamental frequencies in 0 . •

The probability density function of each D' differs and depends on

N. For N - 1 (extreme narrow band processing), D' is distributed
2 2 2 :--

as /<X2 - 1 where X2 is a chi-squared variable with two
a X2/< 2> 2

degrees of freedom. D is distributed as Yexp() where.'1/2B 1 2 epi)whr
2and are independent x2 variables and 8 is uniformly

distributed over [0,2w] . D' is normally distributed, as arem

D' and D' in the limit N + .
E B
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Comparison of the different detectors is made difficult

because (1) <DB> depends on the skewness, q, and the signal variance

E whereas <DE> and <D> depend only on E, and (2) the bispectral

detector makes use of energy outside the signal bandvith S1 whereas

the other detectors depend only on the energy within S). There is

no limit to the size of the skewness and the larger q, the more

useful is bispectral detection. "..

For comparative purposes, results are presented in terms of

the signal to noise ratio

p E/E P (wA

W U

the ratio of signal variance, E, to the noise variance in

, NP w . In terms of p , the mean signal to noise ratios are
u

1/2 3/

<DE>/0 E -N .2p (2.4K) .,.''.

S<D B>/a B (N/2) 2 q p32 (2.4B)

<DM1/M N 1/2 p1/2 (2.4M)
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2.4 Comparison

To compare detectabilities, we imagine the detection -

criteria

DE > DEC Real {DBI > DBReal {D14j > DMC -

where the thresholds DEC, DBC' DMC are set to produce a specified

probability of false alarm (PFA). The signal strength required for

reliable detection at the specified PFA is then characterized by

p(PFA) ,the signal-to-noise ratio required to produce signal

output <D> equal to the threshold for false alarm rate PFA.

of fundamental interest is how the detectable signal-to-

noise ratio depends on the time-bandwidth product N as N + In

this case all detectors have normally distributed outputs and

P (PFA) - 1/2L G(PFA) (2.5E)

Lu-q 2/3  -1/3 2/3
PB(PFA) q N G(PFA) (2.5B)

P14(PFA) N-1 G(PFA)(.M

37
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where G(PFA) is the value a normally distributed variable with zero

mean and unit variance exceeds with probability PFA. From the

dependences of p on N in (2.5), it is clear that the bispectral

detector is inferior at large N compared with the energy detector

(which makes no use of phase information in the signal) and the

matched filter detector (which makes use of all information about

signal waveform). The power of G(PFA) appearing in (2.5) depends on

which moment of the noise contributes to the detector fluctuation;

DM is essentially a first moment detector, DE second moment, and DB

third moment. Since G(PFA) is such a weak function of PFA, the

power of G in (2.5) is not a significant practical consideration

except at extremely small PFA.

For completeness, the extreme of narrowband processing with

N I is associated with the following values of p

P -PFA q2/3 OB

0.1 1.3 0.9 0.8

0.01 3.6 2.1 2.7

0.001 5.9 3.4 4.8 .. -

(2.6)

. ."
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The values of P and P are determined from the X2and normal

distributions; pB was found by Monte Carlo simulation using a

random number generator.

It is, of course, possible to further reduce the required ..

sigal-to-nse ratio for reliable detectionbyichrnl

• . ..

averaging the energy and bispectral detectors. Use of a detector of

the form

M

1 C

reduces the standard deviations, a in (3) by a factor of X-1 12 .

In this case, the relations (2.4) and (2.5) pertain so long as N is

the total time-bandwidth product Mo/Aw

2.5 Conclusion

The energy signal-to-noise ratio required for signal detec-

rtion by spectral and bispectral detectors depends on both the

*detector time-bandwidth product, N, and the acceptable probability

of false alarm, PFA. As N increases, bispectral detection shows a

as the PFA is reduced. However, for realistic time-bandwidth

39
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products the bispectral detection disadvantage is modest. Even for

a bandwidth of 100 1Hz and a coherent processing time of 2 hours, the

N1/ 6 factor corresponds only to a 10 db difference in required

signal-to-noise at a PFA of 0.001; one minute integration corre-

sponds to 6 db. The signal-to-noise required for bispectral detec-

tion also depends on the signal skewness, q. If q is large enough,

it can compensate for the N1 /6 bispectral disadvantage. Bispectral

detectability also depends on how well the theoretical maximum

(2.2B) can be approached. The critical optimistic assumption in

(2.2B) is that the bi-phase of the received signal is predictable.

This requires (1) that the signal bi-phase at the source be stable,

(2) that it be predictable, and (3) that inter-frequency phase rela-

tions not be significantly altered by propagation from source to

receiver.

We cannot assess the degree of optimism associated with the

assumption of predictable signal bi-phase. First, we have no infor-

mation on the inter-frequency phase relations in real signals. It

is expected that there will be stable phase relations between

machinery harmonics, but if these depend on geometry (as supposed in

Hunk's localization concept), or on source identity (which would

permit bispectral classification), they will be difficult to predict

40
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and thus detectability will be degraded. Finally, some careful work
4-

$ on phase distortion is required to determine if bi-phase would

remain stable when acoustic propagation is multi-path.
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3.0 BISPECTRAL EXPERIMENTS

3.1 Introduction

We are interested here in exploring (1) the bispectral

signatures of signals generated by highly nonlinear, quasi-periodic ,

processes, and (2) the efficacy of bispectral analysis in extracting

such signals from noise. Toward this end, signals rich in harmonic

content were generated numerically, purposely contaminated by

Gaussian white noise, and subjected to spectral and bispectral

analysis.

The signal a(k) k -1, . N was generated by solving the

coupled nonlinear differential equations

da a- y sin z
dt

--y + aw + ga
dt

dt- - -ay(3.1)j

dz
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in which we have one adjustable parameter: g. As g varies, so does

the topological character of the solution to (3.1). For g 4 1.5

the solution for long times, t, is a - y = w - z = 0. For g > 1.5

periodic and more complicated asymptotic motion ensues.

We solved (3.1) for a variety of g in the range 2 4 g ( 4

for the initial conditions a(O) - y(O) - w(0) - 1.0 and z(0) - 0.5, .

which has no special significance. We then stepped the solution

for, typically, 104 steps and discarded the first few thousand

points to remove the influence of transients reflecting the initial

conditions. In Figure 3.1 we show a(k) = a(kAt), where At is a

fixed time step used in the solution of (1), at g - 2.5615. The

initial transient is visible as is the final asymptotic behavior.

The latter is shown again in Figure 3.2 to emphasize the non-

sinusoidal nature of our signal. In Figure 3.2 a(k) minus its '. U

average (av) is displayed. All results to be shown here correspond

to the choice g - 2.5615 shown in Figure 3.2. -

3.2 Power Spectrum

The power spectrum of the signal a(k) - av was generated

from a series of 2048 points taken from the asymptotic orbit (Figure

3.2). A cosine taper was applied to the first fifty and last fifty

43"
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Figure 3.2 A few cycles of the signal minus its mean long after initiation.
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points to smooth the discontinuities of the chopped signal. Figure

3.3 shows the natural log of the power spectrum for the first 64

frequencies of the 1024 computed. In Figure 3.4 the averaged power

spectrum, generated by taking 26 . 64 samples of length 211 = 2048,. -

from a data sample of 217 points of a(k), is presented. Each sample

was tapered and Fourier transformed, then the spectrum was averaged

over 64 samples. This averaging should have little effect on the

signal spectrum, which is, in fact, what we see. Averaging elimi-

nates some of the effects of noise in our samples (noise arising

from machine round off errors) and of the phase relation between the

signal oscillations and the record ends. ".-

Next we added Gaussian random noise with a white spectrum

to the signal and processed the noisy signal in the same fashion.

In Figures 3.5 and 3.6 the power spectrum of the contaminated signal

is shown for two different levels of power in the noise. In Figure

3.5 everyone would see the fundamental and sharp eyed optimists also

can make out a harmonic (or two?). In Figure 3.6 even the optimists

are restricted to being fundamentalists.

The problem of detecting the signal spectrum peaks in

-* Figures 3.5 and 3.6 is, of course, an example of energy detection as -

discussed in Section 2. Within this context, the task is to

46
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Figure 3.4 Natural logarithm of the signal spectrum computed from 64 realizations
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Figure 3.5 Natural logarithm of spectrum of signal plus Gaussian white noise computed from
64 realizations.
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Figure 3.6 As Figure 3.5 but with more noise power
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discriminate between spectral structure caused by the signal and

random fluctuations of the noise spectrum. The standard deviation

of the random fluctuations given by (2.3E) compares well with the

evideatly random wiggles in Figures 3.5 and 3.6.

3.3 Bispectra

Now we turn to the bispectrum. First examined was the

diagonal bispectrum

B(f,f) - <a(f) a(f) a (2f)>

where a(f) is the Fourier transform of a(k) -av, with the usual

cosine taper. In Figure 3.7 we display log "B(f,f)l from one

sample of 211 points; 64 frequencies are shown and there is no noise

added to the signal. In Figure 3.8 we have taken 64 samples of the

noise free signal and averaged B(ff) over that ensemble. Since

B(f,f) is cubic in the signal, averaging should reduce the effect of ..

any Gaussian noise (round off error) and there is some evidence of

this in Figure 3.8.

51

.. . .. * , .V * ....

. . .. . . .'.. .- . ,. ... . . .. . V , . P . ..45. .. . . . ,- - - . . ." ' ,

-', .', J'r. . .. -. . . . - -.-- - . . - -" -'-- .. . .".. ." - - . . , . -, ,,



40

AA-

30

20

_10

0

-20 1 1
0 20 40 60 80 _

Figure 3.7 Natural logarithm of the squared magnitude of the signal diagonal bi-periodogram
B(fU) taken from a signal realization. Only the lowest 64 frequencies are
shown.
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Figure 3.8 Natural logarithm of the squared magnitude of the signal diagonal bispectrum
taken from 64 realizations. Dominant peaks occur at fo, Mf0, 5fo ... but additional
structure is evident at 1/2 fo, 5f0/2, 9f0/2, 11f0/2.
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Figures 3.9 and 3.10 show the diagonal bispectrum of signal

plus Gaussian noise for the same noise levels as used in Figures 3.5

uand 3.6 for the power spectrum. It is quite clear that an ensemble

of 64 members has not produced sufficient reduction of background

noise to make the bispectrum a significantly more efficient signal

identifier than is the power spectrum. This is consonant with the .

conclusions of the detectability assessment in Section 2. In fact,

the bispectrum standard deviation of (2.3B) corresponds to noise,-

levels of 31.5 and 35.5, respectively, in Figures 3.5 and 3.6. This

indicates that most of the structure in these figures is due to

random sampling errors.

We made one further exploration into the structure of

B(fl,f2) . By locating the fundamental, fo , of the signal from
1'f2)

the power spectrum we calculated '-'

B(f ,f) = <a(fo ) a(f) a (;o-If)>
0 0 0 *N

averaged over a few frequency bins on each side of f0 " Figures 3.11

and 3.12 show log IB(fOf)12 for one sample and then averaged over --

64 samples with no noise. In Figures 3.13 and 3.14 Gaussian noise

was added at the previous levels and averages over 64 samples were

taken.

54

". ,:'..,-



40

35

'%

9 ~ 30

- 9 25

°° - "

20 20 40 60 0
f

Figure 3.9 Natural logarithm of the squared magnitude of diagonal bispectrumn of signal plus
noise taken from 64 realizations. The noise energy level is the same as in Figure
3.5. If enough realizations had been averaged, the noise contribution would
vanish.
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Figure 3.11 Natural logarithm of the squared magnitude of the signal bi-periodogramn BUf0.0
as a function of fI The frequency to is the peak of the signal power spectrum .,.

(see Figure 3.4). This is an average over one realization.
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Figure 3.13 Natural logarithm of squared magnitude of the bispectrum B(f0 , 0) of signal plus
noise obtained from 64 realizations. The noise level is the same as figures 3.5
and 3.9.
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3.4 Discussion

Comparison of the noise-free power spectrum (Figure 3.4),

the diagonal bispectrum B(ff) (Figure 3.8), and B(fof)

(Figure 3.12), provides some measure of the utility in signal

classification provided by the magnitude of the bispectrum. The

spectrum shows little more than a sequence of harmonic lines at

f0 Hot ..*(2n + 1) fo" The magnitude of the diagonal bispectrum,

and even more so the magnitude of B(fo,f), shows evidence of inter-
1

actions between multiples of f and the subharmonic - f . This0~ 2 o

kind of information should clearly permit discrimination of differ-

ent signal sources which have identical power-spectral signatures.

The phase of the bispectrum should provide even more description if

it does not depend on geometry and/or source operating conditions.

All in all, the cuts of B(f ,f2) we have taken do not show

the bispectrum to be a very valuable indicator of the presence of "-.;-

multiply harmonic signals in the presence of Gaussian noise. '

Several caveats are, however, in order:

(1) Our signal had weak second harmonics and subhar-

monics. We examined spectra and bispectra for another

value of the parameter g for which strong harmonics of __

all orders were present. The bispectrum was rich in
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detail and structure, but no signals were observed in

the presence of noise using bispectra when they were

not also visible in the power spectra.

(2) We took only two cuts through the two-dimensional

frequency space of the bispectrum B(fl,f2). One

should really display the whole 2 dimensional B(f1 ,f2)

surface to exploit the value of B(f ,f2) without

a priori bias about which cut has the essential

information. The results of Kim and Powers (IEEE

Trans Plasma Sci., Vol. PS-7, No. 2, June 1979,

pp. 120-131) support this view. We have simply not

had the time or computer expertise to explore this

aspect of B(fl,f 2). It is not a formidable task.

(3) Our averaging ensembles had only 64 members. Since

incoherent averaging causes the standard deviation of

the bispectrum to disappear only as (degrees of

freedom) -  , we might have expected only a factor of

8 improvement at best in our averaging process. This

* clearly argues for bigger ensembles. We did not

explore averages of the bispectrum over an area in the

f1 ,f2 bispectrum space. This leads to faster noise

* suppression but might also lead to loss of signal

bispectrum unless the bi-phase changes slowly with its

' two frequency arguments.
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4.0 BISPECTRAL LOCALIZATION

4.1 Introduction

There are many problems where phase is irrelevant. An

ocean wave record taken from 10:00 to 11:00 will not differ signifi-

cantly from one taken between 10:01 and 11:01. However, the phase

difference between two nearby recorders gives significant informa-

tion about wave direction. In order for this phase difference to be

measured with adequate precision, the two recorders must be suffi-

ciently close to give coherent records.
O

This is the case where cross-power-spectral analysis

provides information in phase difference and coherence between two

records at one frequency. In the case of auto-bispectral analysis

we obtain relative phase information and bispectral coherence

between two frequencies from one record. (The next step of cross-

bispectral analysis between frequency f1 in record I and f2 in .

record 2 is not of interest at the moment.) We need to say what is

meant by "relative phase" at two frequencies. The simplest

procedure is to (i) split the record into two by pass-band filtering

at fl and f2, (ii) heterodyne both to a single (possibly zero)

frequency, and (iii) obtain the a cross spectrum between the two
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records. The bispectrum provides a systematic way for doing just

that. Step (iii) is, of course, in the spirit of power spectral

analysis, and so some will argue that the procedure outlined is just

an aiplication of ordinary power spectra. We will take the view
-- A

that any analysis involving two frequencies is distinctively differ-

ent from the single frequency power spectrum analysis.

4.2 The Bi-Phase

Consider two sources aboard a submarine, separated by a

distance D, and emitting signals s'(t) and s''(t), respectively. At

a receiver R the received signals are

s'(t) = S,(w)e (w) " - k(w)r'

s"(t) - E S''(w) e, - ' -k(w)r"'

with k = w/c ; here *' and *'' are the relative phases of the

J two sources and depend on w For illustration, ambient noise is

neglected so that the receiver hears only the sum of the two signals " -

* s(t) s' + a'' E S(w) e (4.1)
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and it follows that

S() SIMw e' + S''(w)e' . (4.2)

The bispectrum can be found as the double Fourier transform

of the triple mean product of s,

iW ITI iW 2T2
Bi(w1,w) f ff dr dr <s tTj t)- > e e 22

2) 2 s<t-t1  s~- 2)

(4.3)

and equals

Biw,2) - S(wi)I IS(w2)1I k(wrw 2)t Bl4
which serves as a definition of the bispectral phase *B

BS4.

4.3 The Simplest Case

We imagine a single frequency and its harmonic and set

S -w 6(w-0) * S''(w) 6 (w-20)
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We compute B(Q,Q) from (4.3), which, on comparison with (4.4), ----

yields '' ,

with k 0/ c.

* E

Figure 4.1 sketches the locus of the hyperbolae which have.

equal range difference, r' - r" ' , from the sources s' and s" .  ... :.

These are expressed in fractions of the source separation D. For...'--.

::-.: -;.

the submarine at a fixed range r, changing orientation is equivalent

to moving around a crcle on Figure 4.1. Suppose a trailed submar-

ine turns on its track (which is standard operating procedure).

9. 1

Then e goes from 0 to 180 and S changes by 4 kl. This

ought to give iferncerning;'th measured phase shift A#BS

yields an estimate of D which is of diagnostic value. A further

diagnostic is the value 2fraction at ad-aneuver. The

time-history of # BS (t) for small r is slightly different than for .= - :-

large r which provides some inforation about range. Similar

informatron might be obtained from an increase in Doppler as the

target turns toward the trailer, assuming that i and o" do not

change. But the same (erroneous) conclusion would have been reached

from an increase in source frequency. However, differential Doppler .
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measurements on w' and w" , separately, would provide the same

localization information by making use of the change in inter- -

frequency phase.

4.4 Interpretation of Sources

m ".

The example of an 0 generator at one point well separated L

from a 20 generator at a second point is, of course, naive. If

the U and 2U frequencies are generated at both points but with

unequal intensity, then there is still this kind of information -

contained in *BS , but the interpretation is more difficult.

Physically we might expect that the submarine is set into

normal modes, but that the spatial distribution for U modes differ

from that for 211 modes. The interpretation is then similar, with

D representing the distance between the Q mode centroid and the

20 mode centroid.

A fascinating speculation is whether similar estimations

can be made from the broad-band acoustic spectrum. This is not

impossible. Suppose the flow past the bow results in some resonant

oscillation, and that these develop harmonics downstream associated -
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with hydrodynamic non-linearities. Then again we may have a

situation such as the one modeled by the simple sources above.

*4.5 Other Frequency Ratios

One does not want to be restricted to 2:1 frequency ratios.

Thus, one could go to the trispectrum for 3:1 ratios, etc., but the -

formalism becomes awkward. Futhermore, how would one deal with a .

$5:3 gear ratio?0,_7

'~ %
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